

RESEARCH & DEVELOPMENT Building a scientific foundation for sound cunytronmental decisions

Overview

- > Noncancer Health Assessment
- > Reference Concentration (RfC)
- > Data gaps in developing an RfC
- ➤ Possible animal study objectives

Noncancer Health Assessment Project Team

Chemical Manager & Epidemiology

Dr. Aparna Koppikar, NCEA

Exposure

Dr. Mike Dellarco, NCEA

Geology

Dr. Malcolm Field, NCEA

Analytical Issues

Mary Goldade, Region 8

Animal Toxicology

Dr. Chris Weis, NEIC Dr. Phil Cook, NHEERL

Medical / Clinical

Dr. Aubrey Miller, Region 8

IRIS QA Reviewer

Dr. Danielle DeVoney, NCEA

Document Review and Revision

- > Internal review (in process)
- > Review by other Federal Agencies
- >External review: SAB (Fall 2007)
- >Final revision based on SAB advice and web posting

Noncancer Health Assessment

Standard Chapters to Support IRIS

- > Toxicokinetic data
- > Animal toxicity data
- > Health effects in humans
 - Nonpulmonary
 - ❖ Cardiovascular
 - Immunological (autoimmune)
 - Repro/developmental
 - Pulmonary
 - Changes in clinical parameters
 - ❖ Pleural pathology
 - ❖ Lung pathology
- > Hazard characterization

Noncancer Health Assessment

Special Sections added for Asbestos

- Definition of asbestos mineral fibers is more inclusive
- Discussion of the geology and mineralogy of asbestos
- Overview of exposure, sampling and counting methods are described
- > Clinical signs/symptoms
- Radiological diagnostic procedures and their merits are described and discussed

Reference Concentration

- > For RfC development several options were considered
 - Human data
 - Animal data
- > Epidemiologic data, Libby amphibole
 - Marysville, OH Plant workers
 - Being reviewed for RfC derivation
- ➤ EPA policy is to use human data where available and of appropriate quality

Animal Studies to strengthen basis for noncancer risk assessment and risk characterization

- Biological plausibility in support of critical study and endpoint
 - Proof of the principle
 - (e.g. Libby amphibole displays the same toxicity as other mineral fibers)
 - Confirm progression of disease after exposure has ended
- > Susceptible populations
- > Explore plausibility of non-respiratory effects
 - Autoimmune
 - Cardiovascular
 - Other

Animal studies: Other Risk Assessment Needs

- > Relative fiber toxicity
 - Can the LA RfC be applied to all tremolite? Other amphiboles?
 - Impact of fiber form on relative toxicity
 - Impact fiber dimension on relative toxicity
- > Explore dosimetrics
 - Fiber concentration (current)
 - Surrogate measure of a subset of material
 - Lung burden residence time
 - Surface area
 - Relative fiber potency

Reference Concentration Libby Amphibole

- > Exposure units
 - PCM
- Surrogate measurement possible in TEM units
- Minimizes impact of
 - Fiber form
 - Fiber dimensions
 - Mineralogy

General Approach

- > Tiered approach to studies
 - Relative dissolution in vitro
 - in vitro mechanisms (ROS, RNS etc.)
 - Short-term in vivo
 - Intermediate and chronic in vivo
- > Use other forms of asbestos as controls
 - Tremolite (UICC)
 - Amosite
 - Chrysotile (?)
- Measured dose
 - Fiber count
 - Dimensional characteristics
 - Mass
 - Surface area
- > Tissue dose (initial and over time)
- > Harmonize with cancer studies

Caution regarding quantitative extrapolation from animal studies to human exposures

Libby Asbestos Superfund Site Conceptual Site Model Operable Unit 4

Superfund/ORD Asbestos Research Needs Meeting Research Triangle Park January 17-18, 2007

> Libby Team USEPA Region 8

Roadmap

Conceptual Site Model context

Purpose of Conceptual Site Model

Libby Operable Unit 4 examples

Conceptual Site Model

Identifies origin of contamination

Illustrates movement through the environment

Identifies receptors & routes of exposure

Describes potential exposure pathways

Summary

- Describes potential exposure pathways
- Helps guide the development of the Baseline Risk Assessment
- Is a living document that helps direct future data collection activities